skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hu, Haiyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The notorious polysulfide shuttle effect is a crucial factor responsible for the degradation of Li-S batteries. A good way to suppress the shuttle effect is to effectively anchor dissoluble lithium polysulfides (LPSs, Li 2 S n ) on appropriate substrates. Previous studies have revealed that Li of Li 2 S n is prone to interact with the N of N-containing materials to form Li–N bonds. In this work, by means of density functional theory (DFT) computations, we explored the possibility to form Li bonds on ten different N-containing monolayers, including BN, C 2 N, C 2 N 6 S 3 , C 9 N 4 , a covalent triazine framework (CTF), g -C 3 N 4 , p -C 3 N 4 , C 3 N 5 , S -N 2 S, and T -N 2 S, by examining the adsorption behavior of Li 2 S n ( n = 1, 2, 3, 4, 6, 8) on these two-dimensional (2D) anchoring materials (AMs), and investigated the performance of the formed Li bonds (if any) in inhibiting the shuttle effect. By comparing and analyzing the nitrogen content, the N-containing pore size, charge transfer, and Li bonds, we found that the N content and N-containing pore size correlate with the number of Li bonds, and the formed Li–N bonds between LPSs and AMs correspond well with the adsorption energies of the LPSs. The C 9 N 4 and C 2 N 6 S 3 monolayers were identified as promising AMs in Li-S batteries. From the view of Li bonds, this work provides guidelines for designing 2D N-containing materials as anchoring materials to reduce the shuttle effect in Li-S batteries, and thus improving the performance of Li-S batteries. 
    more » « less